Lipid composition of plant mitochondria and of chloroplasts.

نویسندگان

  • H A Schwertner
  • J B Biale
چکیده

The mitochondrial lipids from avocado fruit, cauliflower buds, and potato tubers, and the lipids of chloroplasts isolated from avocado fruit and from cauliflower leaves were identified and the concentrations were determined. The lipid composition was compared with that of beef heart mitochondria. Phospholipids constituted 50-56% of total lipids in plant mitochondria while this fraction made up 90% of the lipids in beef heart mitochondria. In both cases the chief phospholipids were phosphatidylcholine and phosphatidylethanolamine. A characteristic feature of plant mitochondria was the presence of monogalactosyl- and digalactosyldiglyceride and of sulfolipid. Potato mitochondria differed from the particles of other species investigated by their higher content of galactolipids, sterol glycosides, and carotenoids and lower content of phospholipids and of total lipids in the lipidprotein complex. The galactolipid content was markedly higher in chloroplasts from all sources than in mitochondria. The spectrum of lipids in the phospholipid fraction differed more strikingly between chloroplasts of the leaf and the mitochondria of the bud of cauliflower than between the two organelles of the avocado mesocarp. The fatty acid distribution of individual lipids and of classes of lipids was also more similar in the two organelles of the fruit tissue than in the cauliflower material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribosomal ribonucleic acids of chloroplastic and mitochondrial preparations.

RNA prepared from fractions of chloroplasts and mitochondria sedimented at rates characteristic of ribosomal RNA. A predominance of the 18S species was frequently observed in preparations from chloroplasts from romaine lettuce and endive. The usual distribution, a preponderance of the 28S species, was observed in studies on tomato and spinach chloroplasts and mitochondria from mushroom and caul...

متن کامل

Phosphate regulation of lipid biosynthesis in Arabidopsis is independent of the mitochondrial outer membrane DGS1 complex.

Galactoglycerolipids are major constituents of photosynthetic membranes in chloroplasts. At least three parallel sets of enzymes are involved in their biosynthesis that must be coordinated in response to changing growth conditions. A potential candidate for a protein affecting the activity of different galactoglycerolipid pathways is the recently described digalactosyldiacylglycerol1 (dgd1) SUP...

متن کامل

Knocking Down of Isoprene Emission Modifies the Lipid Matrix of Thylakoid Membranes and Influences the Chloroplast Ultrastructure in Poplar.

Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus × canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phosph...

متن کامل

Lipid composition of chloroplast membranes from weed biotypes differentially sensitive to triazine herbicides.

Chloroplasts were isolated from triazine-sensitive and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.), common lambsquarter (Chenopodium album L.), and redroot pigweed (Amaranthus retroflexus L.). Chloroplast lipids were extracted and analyzed for differences among sensitive and resistant biotypes. The distribution of lipid between major lipid classes differed in chloropla...

متن کامل

The role of transporters in supplying energy to plant plastids.

The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 1973